REVIEW ARTICLE

Dipeptide-induced chirality organization

Toshiyuki Moriuchi · Toshikazu Hirao

Received: 5 January 2012/Accepted: 17 January 2012/Published online: 7 March 2012 © Springer Science+Business Media B.V. 2012

Abstract This review describes an outline of dipeptideinduced chirality organization by using molecular scaffolds. A variety of ferrocene-dipeptide conjugates as bioorganometallics are designed to induce chirality-organized structures of peptides. The ferrocene serves as a reliable organometallic scaffold with a central reverse-turn unit for the construction of protein secondary structures via intramolecular hydrogen bondings, wherein the attached dipeptide strands are constrained within the appropriate dimensions. Another interesting feature of ferrocene-dipeptide conjugates is their strong tendency to self-assemble through contribution of available hydrogen bonding sites for helical architectures in solid states. Symmetrical introduction of two dipeptide chains into a urea molecular scaffold is performed to induce the formation of the chiral hydrogen-bonded duplex, wherein each hydrogenbonded duplex is connected by continuous intermolecular hydrogen bonds to form a double helix-like arrangement.

Keywords Peptide · Amino acid · Ferrocene · Pyridine · Urea · Hydrogen bond · Chirality organization · Self-assembly · Bioorganometallic chemistry

Abbreviations

T. Moriuchi (🖂) · T. Hirao

Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamada-oka, Suita, Osaka 565-0871, Japan e-mail: moriuchi@chem.eng.osaka-u.ac.jp

CD	Circular dichroism
Ср	Cyclopentadienyl
CSA	Cysteamine
DNA	Deoxyribonucleic acid
Et	Ethyl
Fc	Ferrocene
Fc-aa	1,n'-Diaminoferrocene
Fc-ac	1'-Aminoferrocene-1-carboxylic acid
Fc-cc	Ferrocene-1,1'-dicarboxylic acid
FT-IR	Fourier transform infrared spectrometry
Gly	Glycine
Leu	Leucine
Me	Methyl
NMR	Nuclear magnetic resonance
NOE	Nuclear Overhauser effect
Ph	Phenyl
Phe	Phenylalanine
Pr	Propyl
Pro	Proline

Val Valine

Introduction

Architectural control of molecular self-organization is of importance for the development of functional materials [1–3]. Highly-organized molecular assemblies are constructed in proteins to fulfill the unique functions as observed in enzymes, receptors, etc. Hydrogen bonding is a key factor in regulating the three-dimensional structure and function of biological systems. Secondary structures of proteins such as α -helices, β -sheets, and β -turns play an important role in protein folding, which is mostly stabilized by hydrogen bonding and hydrophobic interaction of side chains [4, 5].

Although β -sheets are the key structural elements in proteins to fulfill the biological activity, the structure and stability of β -sheets are less understood as compared with those of α -helices. A series of 12-membered hydrogen-bonded rings are formed in parallel β -sheets, while an alternating series of 10- and 14-membered hydrogen-bonded rings are organized in antiparallel β -sheets. It is difficult to predict the pattern of protein folding from the sequence of amino acids. Considerable efforts have focused on to design secondary structure mimics composed of short peptides for fundamental insight into the factors affecting the protein structure and stability, and for rational design of pharmacologically useful compounds. Highly specific patterns of complementary intraand intermolecular hydrogen bonds are formed in such secondary structures. Control of hydrogen bonding [6] attracts much attention in the design of molecular assemblies by virtue of its directionality and specificity [7–9]. The tuneability and reversibility of hydrogen bonding is also of fundamental importance in the physical properties of molecular assemblies. The utilization of self-assembling properties of short peptides, which hydrogen bonding sites possess and chiral centers, is considered to be a relevant approach to highly ordered molecular assemblies. This review describes an outline of dipeptide-induced chirality organization by using molecular scaffolds. Especially, the hydrogen bonding properties of peptide conjugates to create chirality organization is focused on.

Chirality organization of ferrocene-dipeptide conjugates

Recently, the research field of bioorganometallic chemistry, which is a hybrid area between biology and organometallic chemistry, has attracted much attention. Conjugation of organometallic compounds with biomolecules such as amino acids, peptides, and DNA is envisioned to provide novel systems depending on both properties. In these conjugates, the organometallic moiety can serve as a molecular scaffold, a chromophore, a sensitive probe, a biological marker, a redox-active site, a catalytic active site, etc. Considerable efforts have focused on designing conjugates composed of organometallic compounds and biomolecules [10–14]. Ferrocene (Fc), which is one of the most stable organometallic compounds and the most useful one among metallocenes, has drawn much attention in their application to materials due to a reversible redox couple and two rotatory coplanar cyclopentadienyl (Cp) rings [15]. The inter-ring spacing of about 3.3 Å is appropriate for hydrogen bonding interaction between introduced peptide strands on the two Cp rings as observed in β -sheets. The utilization of a ferrocene unit as an organometallic scaffold with a central reverse-turn unit is considered to be one strategy to study the hydrogen bonding ability of various peptide strands. Ferrocenylalanine, which is the first example of a ferrocene-amino acid conjugate, was synthesized in 1957 [16–18]. After its discovery, a variety of ferrocene-amino acid or peptide conjugates have been designed to obtain a peptidomimetic basis for protein folding and to construct highly-ordered molecular assemblies [19–25].

The capability of ferrocene-1,1'-dicarboxylic acid (Fc-cc) as a molecular scaffold for a regulated conformation through intramolecular hydrogen bonds was demonstrated in the ferrocene-amino acid conjugate using a valine unit by Herrick et al. [26]. Two identical intramolecular interchain hydrogen bonds are formed between CO (Val) and NH (Val of another chain) in CDCl₃ to give a 10-membered hydrogenbonded ring in the case of the ferrocene 1 bearing amino acid chains (-L-Val-OMe), which resemble the hydrogen bonding pattern observed in an antiparallel β -sheet. The regulated conformation of **1** is confirmed by the single-crystal X-ray structure determination [27]. On the other hand, the ferrocene 2 bearing amino acid chains (-L-Phe-OMe) is characterized by only one intramolecular interchain hydrogen bond between CO adjacent to the ferrocene unit and the NH of another strand [28]. The molecules of 2 arrange in a helical fashion, wherein the molecules are linked together via intermolecular hydrogen bonds (Chart 1).

Conformational enantiomers, *P*- and *M*-helical arrangements, based on the torsional twist about the Cp(centroid)-Fe-Cp(centroid) axis are possible in the case of the 1,1'disubstituted ferrocene as depicted in Fig. 1 [15, 29]. Conformational enantiomers can interconvert with ease due to the low barrier of Cp ring twisting. The introduction of peptides into a ferrocene scaffold is envisaged to induce conformational enantiomerization by restriction of the torsional twist through intramolecular interchain hydrogen bonding. The single-crystal X-ray structure determination of the ferrocene **3a** bearing L-dipeptide chains (-L-Ala-L-Pro-OEt) confirms "Herrick" pattern of interchain intramolecular antiparallel β -sheet-like hydrogen bonding between CO (Ala) and NH (Ala of another chain) of each dipeptide chain to induce the chirality-organized structure

Chart 1 Ferrocenes 1-2 bearing amino acid chains

(Fig. 2a) [30–32]. The ferrocenovl moiety of **3a** adopts a P-helical arrangement. The introduction of the dipeptide chains into the ferrocene scaffold induces the chiralityorganized structure based on two rigid intramolecular interchain hydrogen bonds, although a wide range of relative orientations are possible depending on two rotatory Cp rings. The crystal structure of 4 composed of the corresponding D-dipeptide chains (-D-Ala-D-Pro-OEt) reveals an M-helical arrangement of the ferrocenoyl moiety (Fig. 2b). The molecular structures of 3a and 4 are in an excellent mirror image relationship as shown in Fig. 2, indicating conformational enantiomers present (Fig. 1). As a result, the introduction of the chiral dipeptide chains into the ferrocene induces the chirality organization by restriction of the torsional twist through the intramolecular interchain hydrogen bonds [32]. X-ray crystallographic analyses of **3b-d** bearing the methoxycarbonyl, propoxycarbonyl, and benzyloxycarbonyl groups, respectively, show the chirality-organized structure as observed in 3a based on the similar hydrogen bondings (Chart 2) [31].

The ferrocene 3a shows a positive Cotton effect at the absorbance region of the ferrocenoyl moiety in acetonitrile, which indicates a *P*-helical arrangement of the ferrocenoyl moiety (Fig. 3). The mirror image of the signals is observed in the CD spectrum of 4, indicating the chiral molecular arrangement based on the chirality-organized structure via intramolecular interchain hydrogen bondings is formed even in solution [32].

The crystal structure of the ferrocene **5a** bearing dipeptide chains (-Gly-L-Leu-OEt) is characterized by two intramolecular interchain hydrogen bondings between CO (Gly) and

Fig. 1 Enantiomorphous conformations of 1,1'-disubstituted ferrocene

NH (Gly of another strand) of each dipeptide chain to induce the chirality-organized structure, which adopts the same conformation as observed with **3a** (Fig. 4a). The NH of the Leu in this conformation is available for participating in intermolecular hydrogen bonding with CO adjacent to the ferrocene unit, creating the highly organized self-assembly in the crystal packing, wherein each molecule is bonded to four neighboring molecules [32] as shown in Fig. 4b. The kind and grouping of amino acid side chains is known to affect protein secondary structures. The crystal structure of the ferrocene **5b** bearing dipeptide chains (-Gly-L-Phe-OEt) exhibits the same chirality-organized structure based on the "Herrick" pattern of hydrogen bondings (Fig. 5a). However, the ferrocene 5b shows a different molecular arrangement in the crystal. Each molecule is connected to two neighboring molecules, wherein each dipeptide chain forms a 14-membered intermolecularly hydrogen-bonded ring with the dipeptide chain of the neighboring molecule through two

Chart 2 Ferrocenes 3-9 bearing dipeptide chains

Fig. 2 Crystal structures of a 3a and b 4. The purple dotted line represents the hydrogen bond

Fig. 3 CD spectra of 3a and 4 in MeCN (1.0 \times 10^{-4} M)

pairs of symmetrical intermolecular hydrogen bonds [32] as shown in Fig. 5b. A similar organization is observed in the case of the ferrocene **6** bearing dipeptide chains (-L-Ala-L-Phe-OMe) although the unit cell of **6** contains two crystallographically independent molecules [28]. An ordered structure via intramolecular hydrogen bondings is also formed in the case of the ferrocenes **7a–b** [33]. The ferrocene **8** composed of the -Gly-L-Pro-OEt dipeptide chains forms a 10-membered hydrogen-bonded ring to induce the chiralityorganized structure as observed with **3a**. On the contrary, a 14-membered hydrogen-bonded ring is assumed to be formed in the case of the ferrocene **9** composed of the -L-Pro-Gly-OEt dipeptide chains [34]. Configuration and sequence of amino acids are considered to be a key factor for constructing chirality-organized bio-inspired systems with highly ordered structures. The single-crystal X-ray structure determination of the ferrocene **10** bearing dipeptide chains of the heterochiral sequence (-L-Ala-D-Pro-NH-2-Py) reveals the formation of the interchain intramolecular antiparallel β -sheet-like hydrogen bonds as observed in **3a** to induce the chiralityorganized structure, in which a *P*-helical arrangement of the ferrocenoyl moiety is formed (Fig. 6a) [35]. The *P*-helical arrangement of the ferrocenoyl moiety appears to be controlled by the configuration of the alanyl α -carbon atom [36, 37], because a similar type of the chiral

molecular conformation is observed with the ferrocene **3a** bearing -L-Ala-L-Pro-OEt dipeptide chains. Another interesting structural feature is that NH adjacent to the pyridyl moiety participates in the intramolecular hydrogen bonding with CO adjacent to the ferrocene unit of the same dipeptide chain, to nucleate a type II β -turn-like structure in each dipeptide chain. The combination of the ferrocene scaffold as a central reverse-turn unit with the L-Ala-D-Pro hetrochiral dipeptide sequence permits the formation of the artificially regulated antiparallel β -sheet-like and type II β -turn-like structures simultaneously. The crystal structure of **11** composed of the D-Ala-L-Pro-NH-2-Py dipeptide chains, in which an *M* helical arrangement of the ferrocenoyl moiety is formed (Fig. 6b), is in a mirror image relationship with **10** (Chart 3) [35].

A positive Cotton effect of the ferrocene **10** in dichloromethane indicates a *P*-helical arrangement of the ferrocenoyl moiety [35]. Proton magnetic resonance nuclear Overhauser effect (NOE) of **10** in CDCl₃ at 25 °C additionally provides diagnostic evidence for the type II β -turnlike structure. Irradiation of the Cp proton at the α position enhances NH (Ala), NH adjacent to the pyridyl moiety, and pyridyl proton at the 3-position.

The crystal structure of the ferrocene **12** bearing dipeptide chains of the homochiral sequence (-L-Pro-L-Ala-NH-2-Py) is characterized by the presence of the NH adjacent to the pyridyl moiety participating in an intra-molecular hydrogen bond with CO (Pro) of the same

dipeptide chain to nucleate an inverse γ -turn-like structure in each dipeptide chain, where the interchain intramolecular antiparallel β -sheet-like hydrogen bondings between CO adjacent to the ferrocene unit and the NH of the Ala attached to another dipeptide chain are formed (Fig. 7a) [38]. The combination of the ferrocene scaffold with the L-Pro-L-Ala homochiral sequence permits the simultaneous formation of the artificial inverse γ -turn-like and antiparallel β -sheet-like structures.

The diastereomeric dipeptide configurations induce different self-assembling properties. In the crystal structure of the ferrocene **13** bearing L-Pro-D-Ala-NH-2-Py dipeptide chains, the interchain intramolecular antiparallel β -sheet-like hydrogen bonds are observed between CO adjacent to the ferrocene unit and the NH of the Ala attached to another dipeptide chain (Fig. 7b) [38]. On the contrary to **12**, the NH adjacent to the pyridyl moiety participates in an intermolecular hydrogen bond with CO (Pro) of the neighboring molecule to form a 14-membered intermolecularly hydrogen-bonded ring as shown in Fig. 8.

The crystal structure of the ferrocene **14** bearing amino acid chains (-L-Pro-OMe) shows a 1,3'-conformation of two amino acid chains, which minimizes steric interaction of the amino acid chains [39]. The growing oligoproline chain of **15** adopts a stable polyproline-II helix in solution (Chart 4).

Cyclization of ferrocene-dipeptides is a useful strategy to form and stabilize a β -sheet structure based on the close

Chart 3 Ferrocenes 10-13 bearing dipeptide chains

Fig. 7 Crystal structures of a 12 and b 13. The purple dotted line represents the hydrogen bond

proximity of the two peptide strands. The crystal structure of the cyclic ferrocene **16** bearing the cyclic peptide (-Gly-L-Val-CSA)₂ reveals the formation of "Herrick" pattern of intramolecular hydrogen bonds and a *P*-helical arrangement of the ferrocenoyl moiety [40]. Furthermore, four molecules of **16** interact through intermolecular hydrogen bonding to form a β -barrel-like structure. The extension of the β -sheet-like structure, in which the two peptide chains align and engage in interchain hydrogen bonding, is performed in the ferrocene **17** bearing tripeptide chains (-Gly-L-Val-Cys(Bn)-OMe)₂ [41]. The crystal structure of **17** shows that two peptide chains are in an extended conformation and are aligned with respect to each other allowing for the formation of hydrogen bonds between

Chart 4 Ferrocenes 14-17 bearing dipeptide chains

Chart 5 Ferrocenes 18-22 bearing dipeptide chains

the two peptide chains. In addition to the Herrick-type hydrogen bonds proximal to the ferrocene unit, a second cross-strand hydrogen bonding interaction exists between the two amino acids on the C-terminal side of the peptide.

Chart 6 Ferrocenes 23-24 bearing dipeptide chains

The organometallic amino acid, 1'-aminoferrocene-1carboxylic acid (Fc-ac), also serves as a reliable molecular scaffold to induce a turn structure. The crystal structure of the ferrocene **18** (Boc-L-Ala-Fc-ac-L-Ala-L-Ala-OMe) displays intramolecular hydrogen bonds to form a 12-membered hydrogen-bonded ring and a *P*-helical arrangement of

Scheme 1 Chirality-organized structures of ferrocene-peptide conjugates composed of Fc-dicarboxylic acid (Fc-cc), Fc-amino acid (Fc-ac), or Fc-diamine (Fc-aa) scaffold

Fig. 9 Crystal structure of 25. The *purple dotted line* represents the hydrogen bond

the Fc-ac moiety [42]. The structural rigidity of Fc-ac to induce a turn structure is exploited to design extended helical foldamers. The ferrocenes **19–22** with Fc-ac unit exhibit a β -helical-like structure in solution and solid states [43]. The helicity is not influenced by the size of the foldamer. All conjugates derived from L-Ala adopt a *P*-helical conformation, whereas D-Ala induces an *M*-helical conformation (Chart 5).

1,n'-Diaminoferrocene (Fc-aa) serves as a reliable molecular scaffold to allow the attachment of two peptide strands. The ferrocene **23** bearing amino acid chains (-L-Ala-Boc) forms an intramolecular 14-membered hydrogenbonded ring to induce the chirality organization, wherein the Fc-diamine moiety adopts a *P*-helical arrangement [44]. The attachment of one amino acid substituent at the 1,1'-diaminoferrocene central unit is performed to induce chirality organization through intramolecular hydrogen bonds in the ferrocene **24** (Chart 6) [45].

Chirality-organized structures of ferrocene-peptide conjugates composed of Fc-dicarboxylic acid (Fc-cc), Fc-amino acid (Fc-ac), or Fc-diamine (Fc-aa) scaffold are summarized in Scheme 1. With ferrocene scaffolds, the introduced peptide strands are regulated in the appropriate dimensions. Fc-cc scaffold induces a 10-membered hydrogen-bonded ring. A 12-membered hydrogen-bonded ring is formed in the case of Fc-ac scaffold. Fc-aa favors a 14-membered hydrogen-bonded ring.

The self-assembling organization of host molecules is a useful strategy to form active receptors [46]. Utilization of self-assembling properties of amino acids as observed in proteins, which are organized into well-organized threedimensional structures, is considered to be a convenient approach to the desired receptors. Ferrocenes have been focused on as an organometallic scaffold for molecular receptors [47–51]. Ferrocene-peptide conjugates are demonstrated to recognize anions [52, 53] and biomolecules [54–58]. In the ferrocene **25** bearing dipeptide chains (-L-Ala-L-Pro-NH-2-PyMe), the two amido pyridyl moieties as hydrogen bonding sites are well arranged for binding of dicarboxylic acids by the chirality organization through two intramolecular hydrogen bondings as observed

Scheme 2 Binding of dicarboxylic acid to the ferrocene 25

Fig. 10 a A portion of a layer containing the double-helicallike hydrogen-bonded molecular assembly in the crystal packing of $25 \cdot (CA)_2$, b space-filling representations of a top view, and c a side view. The *purple dotted line* represents the hydrogen bond

with **3a** (Fig. 9) [59]. In fact, the size-selective and chiral recognition of dicarboxylic acids is performed by multipoint hydrogen bondings of the binding sites of **25**. The ferrocene **25** forms a 1:1 complex with a series of dicarboxylic acids **26**, wherein a most highest association constant is observed with adipic acid (**26c**, $K_a = 2.1 \times 10^4 \text{ M}^{-1}$, Scheme 2). The binding sites of **25** can discriminate the size of dicarboxylic acids. Noteworthy is that benzoyl-L-glutamic acid (**26f**, $K_a = 5.5 \times 10^3 \text{ M}^{-1}$) is bound approximately fifteen times more tightly to **25** than benzoyl-D-glutamic acid (**26g**, $K_a = 3.7 \times 10^2 \text{ M}^{-1}$). The chirality-organized binding sites of **25** is capable of discriminating the chirality of guest molecules.

Crystallization of a 1:2 mixture of **25** and (1R,3S)camphoric acid (CA) gives the 1:2 complex **25**·(CA)₂ [60]. The single-crystal X-ray structure determination of **25**·(CA)₂ reveals a cocrystal composed of alternating units of **25** and two molecules of CA, which are connected by continuous intermolecular hydrogen bonds to form the double-helical-like hydrogen-bonded molecular arrangement (Fig. 10). Each molecule of CA serves as a hydrogen bonding bridge. One carboxyl group of CA binds to the amide pyridyl binding site of **25** while another carboxyl moiety of CA interacts with CO adjacent to the ferrocene unit of another molecule of **25**. Another noteworthy feature is that the chirality-organized structure of **25** is preserved in spite of complexation with CA.

Generally, an organized structure through intramolecular interchain hydrogen bondings is not formed in the case of ferrocenes bearing only one peptide chain, and an intermolecular hydrogen bonding network is created in a solid state. The ferrocene 27 bearing one amino acid chain (-L-Glu-(OBn)₂) exhibits a linear chain-like structure of molecules linking through intermolecular hydrogen bonding in a crystal structure [61]. Each molecule of the ferrocene 28 bearing one amino acid chain (-L-Cys(SBn)-OMe) is also linked by intermolecular hydrogen bonding as observed in 27 [61]. The hydrogen bonding interactions of CO adjacent to the ferrocene unit with OHs of the α -carboxyl group and the Asp acid side chain of two adjacent molecules, which form a bifurcated hydrogen bond, are observed in the crystal structure of the ferrocene 29 bearing one amino acid chain (-L-Asp-OH) (Chart 7) [62].

Chart 7 Ferrocenes 27-29 bearing one dipeptide chain

Fig. 11 A portion of a layer containing the helical assembly of crystal packing of 30a. The purple dotted line represents the hydrogen bond

Chart 8 Ferrocenes 30-33 bearing one dipeptide chain

Fig. 12 A portion of a layer containing the antiparallel arrangement of crystal packing of **31**. The *purple dotted line* represents the hydrogen bond

Fig. 13 A portion of a layer containing the helical assembly of crystal packing of a 32 or b 33. The *purple dotted line* represents the hydrogen bond

Chart 9 Ferrocenes 34-38 bearing one dipeptide chain

The ferrocene **30a** bearing one dipeptide chain of the homochiral sequence (-L-Ala-L-Pro-OEt) shows intermolecular hydrogen bondings between CO (Ala) and the NH of the Ala attached to another molecule, wherein two independent molecules exist in an asymmetric unit and are connected alternately to form an intermolecular hydrogen bonding network, resulting in a left-handed helically ordered molecular arrangement (Fig. 11) [31]. A similar left-handed helically ordered molecular arrangement is also observed in the ferrocene **30b** bearing one dipeptide chain (-Gly-L-Pro-OEt) (Chart 8) [34].

An antiparallel hydrogen bonding network is formed in a solid state of the ferrocene 31 bearing one dipeptide chain of the homochiral sequence (-L-Ala-L-Pro-NH-2-Py) to create a highly organized assembly, wherein each molecule is connected to two neighboring molecules by NH (Ala)/N (pyridine of another molecule) and NH (adjacent to pyridine unit of another molecule)/O (Ala) intermolecular hydrogen bonds forming a 9-membered intermolecularly hydrogenbonded ring (Fig. 12) [63]. In contrast, the ferrocene 32 bearing one dipeptide chain of the heterochiral sequence (-L-Ala-D-Pro-NH-2-Py) exhibits intermolecular hydrogen bonds, wherein two independent molecules exist in the asymmetric unit and are connected alternately to be packed in a left-handed helically ordered molecular arrangement through a network of intermolecular hydrogen bonds, as shown in Fig. 13a [35]. An opposite helically ordered molecular assembly, a right-handed helically ordered molecular arrangement, is created in the crystal packing of the ferrocene 33 bearing one dipeptide chain of the heterochiral sequence (-D-Ala-L-Pro-NH-2-Py) (Fig. 13b) [35].

The creation of the β -turn mimic is achieved by utilizing the minimum-sized peptide chain. The crystal structure of the ferrocene **34** bearing one dipeptide chain of the heterochiral sequence (-L-Ala-D-Pro-NH-4-Py) reveals that NH adjacent to the pyridyl moiety participates in an intramolecular hydrogen bonding with CO adjacent to the ferrocene unit of the same dipeptide chain to nucleate a type II β -turn-like structure (Fig. 14) [64]. This chirality-organized structure is in sharp contrast to the crystal structure of

Fig. 14 Crystal structure of 34. The *purple dotted line* represents the hydrogen bond

32. The position of the pyridyl nitrogen is found to control the self-organization (Chart 9).

The intermolecular hydrogen bonding interactions of the ferrocene 35a bearing one dipeptide chain (-L-Leu-L-Phe-OMe) forms the helicate with the ferrocene groups on the outside of the helix and the isobutyl groups on the inside of the helix [65]. A helical molecular arrangement by intermolecular hydrogen bonding interactions is also observed in the ferrocene 35b bearing one dipeptide chain (-L-Ala-L-Phe-OMe) [28]. X-ray crystallographic analyses of the ferrocenes 36 and 37b-d bearing one oligoprolyl chain show that these ferrocene-peptide conjugates adopt a lefthanded polyproline II helix with all prolines in a mutually *trans*-conformation [66]. On the other hand, ferrocene **38** bearing one tripeptide chain (-L-Pro-L-Pro-L-Phe-OH) forms a strong intramolecular hydrogen bond between CO adjacent to the ferrocene unit and NH (Phe) to create a β -turn structural motif [66].

Metal ions are known to show a variety of properties in proteins, one of which is structural stabilization for biological function [67, 68]. Incorporation of metal

Fig. 15 Crystal structure of 40. The *purple dotted line* represents the hydrogen bond

coordination sites into peptides has been investigated on the stabilization of secondary structures [69-73] and catalytic activities [74–76]. The complexation with metal ion is expected to stabilize and/or regulate secondary structures of peptide chains. The ferrocene 39 bearing dipeptide chains of the homochiral sequence (-L-Ala-L-Pro-NH-2-Py), which is characterized by the chirality-organized structure through two intramolecular interchain hydrogen bondings as observed with 3a, forms the 1:1 trans-palladium complex 40 with PdCl₂(MeCN)₂ to stabilize the conformational regulation in both solution and solid states (Fig. 15) [77]. The more downfield shifting of Ala N-H resonance in the ¹H NMR spectrum of 40 in CDCl₃ as compared with that of 39 indicates that the complexation strengthens the intramolecular hydrogen bondings. The single-crystal X-ray structure determination of 40 reveals the pseudo-helical conformation through palladium coordination and chirality organization based on the preservation of the intramolecular interchain hydrogen bonds as shown in Fig. 15 (Chart 10) [77].

The ferrocene **32** bearing one dipeptide chain of the heterochiral sequence (-L-Ala-D-Pro-NH-2-Py) forms the 2:1 *trans*-palladium complex **41** [78]. The crystal structure of **41** shows a pseudo-helical conformation through coordination to palladium and chirality organization through

NH (Ala)/Cl, NH (adjacent to pyridine unit)/O (Ala), and NH (adjacent to pyridine unit of another molecule)/O (Ala) intramolecular hydrogen bonds, in which two ferrocenedipeptide conjugates coordinate to a palladium center unsymmetrically (Fig. 16a). Noteworthy is that NH adjacent to the pyridyl moiety of one dipeptide chain participates in the intramolecular hydrogen bonding with CO (Ala) of the same dipeptide chain to nucleate a γ -turn-like structure. This chirality-organized structure is in sharp contrast to the crystal structure of 32, in which intermolecular hydrogen bonds are formed instead of the intramolecular hydrogen bonds to induce a helically ordered molecular assembly (Fig. 13a) [35]. These findings indicate that the complexation with PdCl₂(MeCN)₂ induces the y-turn-like structural regulation of the dipeptide chain through intramolecular hydrogen bonding in the crystal structure (Chart 11).

Transition metal-directed assembly is regarded as a useful strategy to form a highly ordered molecular assembly. To assemble the ferrocene-dipeptide conjugates, a metal-directed strategy is embarked upon by using $[Pd(MeCN)_4](BF_4)_2$ which has four binding sites as a metal binder. The ferrocene 34 forms the 4:1 palladium complex 42 with 0.25 equiv of $[Pd(MeCN)_4](BF_4)_2$ in acetonitrile [64]. The crystal structure of 42 reveals that the four ferrocene-dipeptide conjugates are assembled around a palladium center in the same direction to form a chiral pocket surrounded by the dipeptide chains, wherein one BF₄⁻ counter anion is accommodated (Fig. 16b). Another interesting feature of the palladium complex 42 is that a β -turnlike structure through the intramolecular hydrogen bonding is preserved in each ferrocene-dipeptide conjugate despite of complexation, wherein a type II β -turn-like structure of one ferrocene-dipeptide conjugate changes to an intermediate between a type I' and type III' β -turn-like structures.

Self-assembled monolayers (SAM) of helical ferrocene contained peptides have been focused on to investigate the electron transfer (ET) reaction. The well-ordered SAMs are formed from helical peptides **43** and **44** having a ferrocene moiety at the N- or C-terminal end [79]. Electrochemical

Chart 10 Ferrocene 39 and the 1:1 *trans*-palladium complex 40

35

measurements suggest that a long-range ET reaction over 4 nm occurs with the inelastic hopping mechanism over the superexchange mechanism in the SAMs. The accelerating effect of the helix dipole on the ET rate is observed probably due to the lowering of the barrier height between the gold surface and the peptide layer. The

Chart 13 The dipeptidyl urea 46 composed of two dipeptide chains (-L-Ala-L-Pro-NH-2-Py)

N-ferrocenoyl-labeled oligoproline cystamines **45** form stable monolayers on gold, in which the formation of hydrogen bond between adjacent molecules is considered to be a key factor in packing and stability of the monolayers [80]. The ferrocenes **45e–g** adopt the helical all*trans* polyproline II conformation in solution although **45b–c** show higher flexibility and potential to undergo *cis– trans* isomerization in solution. The ferrocene moiety of **45** becomes easier to be oxidized with increasing length of the oligoproline chain. The significant deviation from Marcustype behavior indicates a through-bond mechanism in the ET process between the ferrocenyl redox probe and the gold microelectrode surface across the oligoproline spacer although the $k_{\rm ET}$ is distance-dependent (Chart 12).

Fig. 17 a Stick, b space-filling representations of a hydrogen-bonded duplex of 46, and c space-filling representation of a portion of a layer containing the double helix-like arrangement of the crystal packing of 46. The *purple dotted line* represents the hydrogen bond

Scheme 3 A shuttle-like dynamic process of the dipeptidyl urea 46

Chirality organization of dipeptidyl urea

Urea functionality has been utilized to create highly organized molecular assemblies through hydrogen bonding [81-90]. Combination of a urea and peptide unit is expected to provide stable hydrogen-bonded molecular assemblies [91–94]. Among the numerous artificial selfassembly systems through hydrogen bonding, formation of stable hydrogen-bonded molecular duplexes is one of the important targets of current research [95–102]. The crystal structure of the dipeptidyl urea 46 composed of two dipeptide chains (-L-Ala-L-Pro-NH-2-Py) reveals that two molecules of 46 are held together by six intermolecular hydrogen bonds to form a hydrogen-bonded duplex, which adopts a right-handed helical conformation (Fig. 17a-b) [103]. The propensity to form the chiral helicity is considered to be induced by the chirality of the peptide chains. Interestingly, each hydrogen-bonded duplex is connected by continuous intermolecular hydrogen bonds between urea CO and C-terminal amide NH to form a double helixlike arrangement as depicted in Fig. 17c. This hydrogenbonded duplex shows a shuttle-like dynamic process based on the recombination of hydrogen bonds in a solution state (Scheme 3) [103]. The activation energy of this process is calculated as 9.4 kcal/mol (Chart 13).

Conclusion

A variety of dipeptide-induced chirality-organized structures are designed by the incorporation of dipeptides into molecular scaffolds. With molecular scaffolds, the introduced peptide strands are regulated in the appropriate dimensions. The utilization of molecular scaffolds is a useful strategy for organization of peptide structures, which allows the control of intramolecular interaction of peptides or peptidomimetic strands. The configuration and sequence of the amino acids are key factors in the construction of the chirality-organized bio-inspired systems under controlled hydrogen bonding. The chemical models of protein secondary structures provide fundamental insight into the factors affecting protein structure and stability. A further interesting feature of the peptide conjugates is their strong tendency to self-assemble through contribution of all available hydrogen bonding donors in a solid state. An assembling of the chirality-organized bioconjugates is also performed by metal-directed assembly. The architectural control of molecular assemblies utilizing biomolecules, which possess hydrogen bonding sites and chiral centers, is envisioned to be a useful approach to artificial highlyorganized systems.

Acknowledgments One of the authors T. M. expresses special thanks the organizing committee of Host–Guest and Supramolecular Chemistry Society, Japan for giving him the HGCS Japan Award of Excellence 2011 and the opportunity to write this article. Financial support from Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT) is gratefully appreciated. We express our gratitude for all of our talented co-workers for their great contributions.

References

- Braga, D., Grepioni, F., Desiraju, G.R.: Crystal engineering and organometallic architecture. Chem. Rev. 98, 1375–1406 (1998)
- Balzani, V., Credi, A., Raymo, F.M., Stoddart, J.F.: Artificial molecular machines. Angew. Chem. Int. Ed. **39**, 3348–3391 (2000)
- Swiegers, G.F., Malefetse, T.J.: New Self-assembled structural motifs in coordination chemistry. Chem. Rev. 100, 3483–3538 (2000)
- 4. Kyte, J.: Structure in protein chemistry. Garland, New York (1995)
- 5. Branden, C., Tooze, J.: Introduction to protein structure, 2nd edn. Garland, New York (1998)
- Jeffrey, G.A.: An introduction to hydrogen bonding, 1st edn. Oxford University Press, New York (1997)
- Conn, M.M., Rebek Jr., J.: Self-assembling capsules. Chem. Rev. 97, 1647–1668 (1997)
- Archer, E.A., Gong, H., Krische, M.J.: Hydrogen bonding in noncovalent synthesis: Selectivity and the directed organization of molecular strands. Tetrahedron 57, 1139–1159 (2001)
- Prins, L.J., Reinhoudt, D.N., Timmerman, P.: Noncovalent synthesis using hydrogen bonding. Angew. Chem. Int. Ed. 40, 2382–2426 (2001)
- Jaouen, G., Vessiéres, A., Butler, I.S.: Bioorganometallic chemistry: a future direction for transition metal organometallic chemistry? Acc. Chem. Res. 26, 361–369 (1993)
- 11. Severin, R., Bergs, R., Beck, W.: Bioorganometallic chemistry: transition metal complexes with α -amino acids and peptides. Angew. Chem. Int. Ed. **37**, 1634–1654 (1998)
- Jaouen. G. (ed.): Bioorganometallic chemistry special issue. J. Organomet. Chem., 589, 1–126 (1999)

- Fish, R.H., Jaouen, G.: Bioorganometallic chemistry: structural diversity of organometallic complexes with bioligands and molecular recognition studies of several supramolecular hosts with biomolecules, alkali-metal ions, and organometallic pharmaceuticals. Organometallics 22, 2166–2177 (2003)
- Jaouen, G. (ed.): Bioorganometallics; biomolecules, labeling, medicine. Wiley-VCH, Weinheim (2006) and references therein
- 15. Togni, A., Hayashi, T.: Ferrocenes. Wiley-VCH, Weinheim (1995)
- Schlögl, K.: Über Ferrocen-Aminosäuren und verwandte Verbindungen. Monatsh. Chem. 88, 601–621 (1957)
- 17. Hauser, C.R., Lindsay, J.K.: Certain alkylations with the methiodide of *N*,*N*-dimethylaminomethylferrocene. Synthesis of an α -amino acid having the ferrocene group. J. Org. Chem. **22**, 1246–1247 (1957)
- Osgerby, J.M., Pauson, P.L.: Ferrocene derivatives. Part VI. DL-Ferrocenylalanine. J. Chem. Soc. 656–660 (1958)
- Moriuchi, T., Hirao, T.: Highly ordered structures of peptides by using molecular scaffolds. Chem. Soc. Rev. 33, 294–301 (2004)
- van Staveren, D.R., Metzler-Nolte, N.: Bioorganometallic chemistry of ferrocene. Chem. Rev. 104, 5931–5986 (2004)
- Kirin, S.I., Kraatz, H.-B., Metzler-Nolte, N.: Systematizing structural motifs and nomenclature in 1,n'-disubstituted ferrocene peptides. Chem. Soc. Rev. 35, 348–354 (2006)
- Moriuchi, T., Hirao, T.: Ferrocene-peptide bioconjugates. In: Simonneaux, G. (ed.) Bioorganometallic chemistry, vol. 17, pp. 143–175. Springer, Berlin (2006)
- Salmain, M., Metzler-Nolte, N.: Bioorganometallic chemistry of ferrocene. In: Stepnicka, P. (ed.) Ferrocenes, pp. 499–639. Wiley, Chichester (2008)
- Lataifeh, A., Beheshti, S., Kraatz, H.-B.: Designer peptides: Attempt to control peptide structure by exploiting ferrocene as a scaffold. Eur. J. Inorg. Chem. 3205–3218 (2009) and references threrein
- Moriuchi, T., Hirao, T.: Design of ferrocene-dipeptide bioorganometallic conjugates to induce chirality-organized structures. Acc. Chem. Res. 43, 1040–1051 (2010)
- Herrick, R.S., Jarret, R.M., Curran, T.P., Dragoli, D.R., Flaherty, M.B., Lindyberg, S.E., Slate, R.A., Thornton, L.C.: Ordered conformations in *bis*(amino acid) derivatives of 1,1'-ferrocenedicarboxylic acid. Tetrahedron Lett. **37**, 5289–5292 (1996)
- Oberhoff, M., Duda, L., Karl, J., Mohr, R., Erker, G., Fröhlich, R., Grehl, M.: The isocyanate route to cyclopentadienyl-carboxamide- and cyclopentadienyl-amino ester-substituted metallocene complexes. Organometallics 15, 4005–4011 (1996)
- 28. van Staveren, D.R., Weyhermüller, T., Metzler-Nolte, N.: Organometallic β-turn mimetics. A structural and spectroscopic study of inter-strand hydrogen bonding in ferrocene and cobaltocenium conjugates of amino acids and dipeptides. Dalton. Trans. 210–220 (2003)
- Cerichelli, G., Floris, B., Ortaggi, G.: Stereochemical consequences of the intramolecular hydrogen bond in 1'-acetyl-1-α-hydroxyethyl- and 1,1'-bis(α-hydroxyethyl)ferrocenes. J. Organomet. Chem. **76**, 73–79 (1974)
- Nomoto, A., Moriuchi, T., Yamazaki, S., Ogawa, A., Hirao, T.: A highly ordered ferrocene system regulated by podand peptide chains. Chem. Commun. 1963–1964 (1998)
- Moriuchi, T., Nomoto, A., Yoshida, K., Hirao, T.: Characterization of ferrocene derivatives bearing podand dipeptide chains (-L-Ala-L-Pro-OR). J. Organomet. Chem. 589, 50–58 (1999)
- Moriuchi, T., Nomoto, A., Yoshida, K., Ogawa, A., Hirao, T.: Chirality organization of ferrocenes bearing podand dipeptide chains: synthesis and structural characterization. J. Am. Chem. Soc. 123, 68–75 (2001)
- Bauer, W., Polborn, K., Beck, W.: Metal complexes of biologically important ligands, CXIV ferrocenyl–oxazolones as N and

C donors in Pd(II), Pt(II) and Ir(III) complexes and ferrocenoyldipeptides. J. Organomet. Chem. **579**, 269–279 (1999)

- Moriuchi, T., Nomoto, A., Yoshida, K., Hirao, T.: Intramolecular conformational control in ferrocenes bearing podand dipeptide chains. Organometallics 20, 1008–1013 (2001)
- Moriuchi, T., Nagai, T., Hirao, T.: Chirality organization of ferrocenes bearing dipeptide chains of heterochiral sequence. Org. Lett. 7, 5265–5268 (2005)
- 36. Kirin, S.I., Wissenbach, D., Metzler-Nolte, N.: Unsymmetrical 1,n'-disubstituted ferrocenoyl peptides: convenient one pot synthesis and solution structures by CD and NMR spectroscopy. New J. Chem. 29, 1168–1173 (2005)
- Heinze, K., Beckmann, M.: Conformational analysis of chiral ferrocene-peptides. Eur. J. Inorg. Chem. 3450–3457 (2005)
- Moriuchi, T., Nagai, T., Hirao, T.: Induction of γ-turn-like structure in ferrocene bearing dipeptide chains via conformational control. Org. Lett. 8, 31–34 (2006)
- Xu, Y., Saweczko, P., Kraatz, H.-B.: 1,1'-Ferrocenoyl–oligoprolines. A synthetic, structural and electrochemical study. J. Organomet. Chem. 637–639, 335–342 (2001)
- 40. Chowdhury, S., Sanders, D.A.R., Schatte, G., Kraatz, H.-B.: Discovery of a pseudo β barrel: synthesis and formation by tiling of ferrocene cyclopeptides. Angew. Chem. Int. Ed. **45**, 751–754 (2006)
- Chowdhury, S., Schatte, G., Kraatz, H.-B.: How useful is ferrocene as a scaffold for the design of β-sheet foldamers? Angew. Chem. Int. Ed. 47, 7056–7059 (2008)
- 42. L., Barišić, M., Dropučić, V., Rapić, H., Pritzkow, S.I. Kirin, Metzler-Nolte, N.: The first oligopeptide derivative of 1'-aminoferrocene-1-carboxylic acid shows helical chirality with antiparallel strands. Chem. Commun. 2004–2005 (2004)
- Chowdhury, S., Schatte, G., Kraatz, H.-B.: Rational design of bioorganometallic foldamers: a potential model for parallel βhelical peptides. Angew. Chem. Int. Ed. 45, 6882–6884 (2006)
- 44. Chowdhury, S., Schatte, G., Mahmoud, K.A., Kraatz, H.-B.: Amino acid conjugates of 1,1'-diaminoferrocene. Synthesis and chiral organization. Org. Biomol. Chem. 3, 3018–3023 (2005)
- Djaković, S., Siebler, D., Semenčić, M.C., Heinze, K., Rapić, V.: Spectroscopic and theoretical study of asymmetric 1,1'diaminoferrocene conjugates of α-amino acids. Organometallics 27, 1447–1453 (2008)
- Rebek Jr., J.: Simultaneous encapsulation: Molecules held at close range. Angew. Chem. Int. Ed. 44, 2068–2078 (2005)
- Saji, T., Kinoshita, I.: Electrochemical ion transport with ferrocene functionalized crown ether. J. Chem. Soc. Chem. Commun. 716–717 (1986)
- Medina, J.C., Li, C., Bott, S.G., Atwood, J.L., Gokel, G.W.: A molecular receptor based on the ferrocene system: selective complexation using atomic ball bearings. J. Am. Chem. Soc. 113, 366–367 (1991)
- Medina, J.C., Goodnow, T.T., Rojas, M.T., Atwood, J.L., Lynn, B.C., Kaifer, A.E., Gokel, G.W.: Ferrocenyl iron as a donor group for complexed silver in ferrocenyldimethyl[2.2]cryptand: a redox-switched receptor effective in water. J. Am. Chem. Soc. 114, 10583–10595 (1992)
- Beer, P.D.: Anion selective recognition and optical/electrochemical sensing by novel transition-metal receptor systems. Chem. Commun. 689–696 (1996)
- Carr, J.D., Lambert, L., Hibbs, D.E., Hursthouse, M.B., Malik, K.M.A., Tucker, J.H.R.: Novel electrochemical sensors for neutral molecules. Chem. Commun. 1649–1650 (1997)
- 52. Gallagher, J.F., Kenny, P.T.M., Sheehy, M.J.: Electrochemical anion recognition by redox-responsive unnatural amino acid derivatives; the X-ray crystal structure of *N*-ferrocenoyl glycine methyl ester, $(\eta^5-C_5H_5)Fe(\eta^5-C_5H_4)CONHCH_2COOMe$. Inorg. Chem. Commun. **2**, 200–202 (1999)

- 53. Gallagher, J.F., Kenny, P.T.M., Sheehy, M.J.: Synthesis and electrochemical anion recognition by novel redox-responsive ferrocenoyl dipeptide ester derivatives; ¹H NMR anion complexation studies. Inorg. Chem. Commun. 2, 327–330 (1999)
- Georgopoulou, A.S., Mingos, D.M.P., White, A.J.P., Williams, D.J., Horrocks, B.R., Houlton, A.: Bifunctional ferrocene derivatives for molecular recognition of DNA duplexes. J. Chem. Soc., Dalton Trans. 2969–2974 (2000)
- Plumb, K., Kraatz, H.-B.: Interaction of a ferrocenoyl-modified peptide with papain: toward protein-sensitive electrochemical probes. Bioconjugate. Chem. 14, 601–606 (2003)
- Miklán, Z., Szabó, R., Zsoldos-Mády, V., Reményi, J., Bánóczi, Z., Hudecz, F.: New ferrocene containing peptide conjugates: synthesis and effect on human leukemia (HL-60) cells. Biopolymers 88, 108–114 (2007)
- 57. Mahmoud, K.A., Kraatz, H.-B.: A bioorganometallic approach for the electrochemical detection of proteins: a study on the interaction of ferrocene-peptide conjugates with papain in solution and on Au surfaces. Chem. Eur. J. 13, 5885–5895 (2007)
- Kerman, K., Kraatz, H.-B.: Electrochemical probing of HIV enzymes using ferrocene-conjugated peptides on surfaces. Analyst 134, 2400–2404 (2009)
- Moriuchi, T., Yoshida, K., Hirao, T.: Chirality-organized ferrocene receptor bearing podand dipeptide chains (-L-Ala-L-Pro-NHPyMe) for the selective recognition of dicarboxylic acids. Org. Lett. 5, 4285–4288 (2003)
- Moriuchi, T., Yoshida, K., Hirao, T.: Hydrogen-bonding-directed molecular assembly of ferrocene bearing dipeptide chains (-L-Ala-L-Pro-NHPyMe) as an organometallic crystal architecture. J. Organomet. Chem. 668, 31–34 (2003)
- Kraatz, H.-B., Lusztyk, J., Enright, G.D.: Ferrocenoyl amino acids: a synthetic and structural study. Inorg. Chem. 36, 2400–2405 (1997)
- Baker, M.V., Kraatz, H.-B., Quail, J.W.: Solvent effects on the redox properties of ferrocenoyl-dipeptides. New J. Chem. 25, 427–433 (2001)
- Moriuchi, T., Yoshida, K., Hirao, T.: Structural characterization and complexation behavior of ferrocene bearing dipeptide chain (-L-Ala-L-Pro-NHPy). J. Organomet. Chem. 637–639, 75–79 (2001)
- 64. Moriuchi, T., Fujiwara, T., Hirao, T.: β-Turn-structure-assembled palladium complexes by complexation-induced self-organization of ferrocene-dipeptide conjugates. Dalton Trans. 4286–4288 (2009)
- 65. Saweczko, P., Enright, G.D., Kraatz, H.-B.: Interaction of ferrocenoyl-dipeptides with 3-aminopyrazole derivatives: β-Sheet models? A synthetic, spectroscopic, structural, and electrochemical study. Inorg. Chem. 40, 4409–4419 (2001)
- 66. Kraatz, H.-B., Leek, D.M., Houmam, A., Enright, G.D., Lusztyk, J., Wayner, D.D.M.: The ferrocene moiety as a structural probe: redox and structural properties of ferrocenoyl-oligoprolines Fc-Pron-OBzl (n = 1–4) and Fc-Pro2-Phe-OBzl. J. Organomet. Chem. 589, 38–49 (1999)
- Anfinsen, C.B., Edsall, J.T., Richards, F.M., Eisenberg, D.S.: Advances in protein chemistry. Academic Press, New York (1991)
- 68. Kaim, W., Schwederski, B.: Bioinorganic chemistry: inorganic elements in the chemistry of life. Wiley, New York (1994)
- 69. Ghadiri, M.R., Choi, C.: Secondary structure nucleation in peptides. Transition metal ion stabilized α -helices. J. Am. Chem. Soc. **112**, 1630–1632 (1990)
- Handel, T., DeGrado, W.F.: De novo design of a Zn²⁺-binding protein. J. Am. Chem. Soc. **112**, 6710–6711 (1990)
- Ruan, F., Chen, Y., Hopkins, P.B.: Metal ion-enhanced helicity in synthetic peptides containing unnatural, metal-ligating residues. J. Am. Chem. Soc. **112**, 9403–9404 (1990)

- 39
- 72. Schneider, J.P., Kelly, J.W.: Synthesis and efficacy of square planar copper complexes designed to nucleate β -sheet structure. J. Am. Chem. Soc. **117**, 2533–2546 (1995)
- Gilbertson, S.R., Pawlick, R.V.: Synthesis of thiophosphoryl derivatives of proline: building blocks for phosphanyl-substituted peptides with β-turns. Angew. Chem. Int. Ed. Engl. 35, 902–904 (1996)
- Merkle, D.L., Schmidt, M.H., Berg, J.M.: Design and characterization of a ligand-binding metallopeptide. J. Am. Chem. Soc. 113, 5450–5451 (1991)
- 75. Gilbertson, S.R., Collibee, S.E., Agarkov, A.: Asymmetric catalysis with libraries of palladium β -turn phosphine complexes. J. Am. Chem. Soc. **122**, 6522–6523 (2000)
- Agarkov, A., Greenfield, S.J., Ohishi, T., Collibee, S.E., Gilbertson, S.R.: Catalysis with phosphine-containing amino acids in various "turn" motifs. J. Org. Chem. 69, 8077–8085 (2004)
- Moriuchi, T., Yoshida, K., Hirao, T.: Complexation stabilized conformational regulation of ferrocene bearing podand dipeptide chains (-L-Ala-L-Pro-NHPy). Organometallics 20, 3101–3105 (2001)
- Moriuchi, T., Fujiwara, T., Hirao, T.: Complexation-induced conformational regulation of ferrocene-dipeptide conjugates to nucleate γ-turn-like structure. J. Organomet. Chem. 692, 1353–1357 (2007)
- Morita, T., Kimura, S.: Long-range electron transfer over 4 nm governed by an inelastic hopping mechanism in self-assembled monolayers of helical peptides. J. Am. Chem. Soc. 125, 8732– 8733 (2003)
- Galka, M.M., Kraatz, H.-B.: Electron transfer studies on selfassembled monolayers of helical ferrocenoyl-oligoprolinecystamine bound to gold. ChemPhysChem 3, 356–359 (2002)
- Zhao, X., Chang, Y.-L., Fowler, F.W., Lauher, J.W.: An approach to the design of molecular solids. The ureylene dicarboxylic acids. J. Am. Chem. Soc. **112**, 6627–6634 (1990)
- Etter, M.C., Urbanczyk-Lipkowska, Z., Zia-Ebrahimi, M., Panunto, T.W.: Hydrogen bond directed cocrystallization and molecular recognition properties of diarylureas. J. Am. Chem. Soc. 112, 8415–8426 (1990)
- Nowick, J.S., Powell, N.A., Martinez, E.J., Smith, E.M., Noronha, G.: Molecular scaffolds I: Intramolecular hydrogen bonding in a family of di- and triureas. J. Org. Chem. 57, 3763–3765 (1992)
- Shimizu, K.D., Rebek Jr., J.: Synthesis and assembly of selfcomplementary calix[4]arenes. Proc. Natl. Acad. Sci. USA 92, 12403–12407 (1995)
- Hanabusa, K., Shimura, K., Hirose, K., Kimura, M., Shirai, H.: Formation of organogels by intermolecular hydrogen bonding between ureylene segment. Chem. Lett. 885–886 (1996)
- Scheerder, J., Vreekamp, R.H., Engbersen, J.F.J., Verboom, W., van Duynhoven, J.P.M., Reinhoudt, D.N.: The pinched cone conformation of calix[4]arenes: Noncovalent rigidification of the calix[4]arene skeleton. J. Org. Chem. 61, 348–3476 (1996)
- de Loos, M., Esch, J.V., Stokroos, I., Kellogg, R.M., Feringa, B.L.: Remarkable stabilization of self-assembled organogels by polymerization. J. Am. Chem. Soc. **119**, 12675–12676 (1997)
- Shi, C., Huang, Z., Kilic, S., Xu, J., Enick, R.M., Beckmen, E.J., Carr, A.J., Melendez, R.E., Hamilton, A.D.: The gelation of CO₂: a sustainable route to the creation of microcellular materials. Science 286, 1540–1543 (1999)
- Myles, A.J., Branda, N.R.: Controlling photoinduced electron transfer within a hydrogen-bonded porphyrin–phenoxynaphthacenequinone photochromic system. J. Am. Chem. Soc. 123, 177–178 (2001)
- Shimizu, L.S., Smith, M.D., Hughes, A.D., Shimizu, K.D.: Selfassembly of a bis-urea macrocycle into a columnar nanotube. Chem. Commun. 1592–1593 (2001)

- Nowick, J.S., Smith, E.M., Noronha, G.: Molecular scaffolds. 3. An artificial parallel β-sheet. J. Org. Chem. 60, 7386–7387 (1995)
- Castellano, R.K., Kim, B.H., Rebek Jr., J.: Chiral capsules: asymmetric binding in calixarene-based dimers. J. Am. Chem. Soc. 119, 12671–12672 (1997)
- Ranganathan, D., Lakshmi, C., Karle, I.L.: Hydrogen-bonded self-assembled peptide nanotubes from cystine-based macrocyclic bisureas. J. Am. Chem. Soc. **121**, 6103–6107 (1999)
- Rincón, A.M., Prados, P., de Mendoza, J.: A calix[4]arene ureidopeptide dimer self-assembled through two superposed hydrogen bond arrays. J. Am. Chem. Soc. **123**, 3493–3498 (2001)
- 95. Bisson, A.P., Hunter, C.A.: (1996). Cooperativity in the assembly of zipper complexes. Chem. Commun. 1723–1724 (1996)
- 96. Gong, B., Yan, Y., Zeng, H., Skrzypczak-Jankunn, E., Kim, Y.W., Zhu, J., Ickes, H.: A new approach for the design of supramolecular recognition units: hydrogen-bonded molecular duplexes. J. Am. Chem. Soc. **121**, 5607–5608 (1999)
- 97. Nowick, J.S., Tsai, J.H., Bui, Q.-C.D., Maitra, S.: A chemical model of a protein β -sheet dimer. J. Am. Chem. Soc. **121**, 8409–8410 (1999)

- Folmer, B.J.B., Sijbesma, R.P., Kooijman, H., Spek, A.L., Meijer, E.W.: Cooperative dynamics in duplexes of stacked hydrogen-bonded moieties. J. Am. Chem. Soc. **121**, 9001–9007 (1999)
- 99. Zeng, H., Miller, R.S., Flowers II, R.A., Gong, B.: A highly stable, six-hydrogen-bonded molecular duplex. J. Am. Chem. Soc. 122, 2635–2644 (2000)
- Corbin, P.S., Zimmerman, S.C.: Complexation-induced unfolding of heterocyclic ureas: A hydrogen-bonded, sheetlike heterodimer. J. Am. Chem. Soc. 122, 3779–3780 (2000)
- 101. Berl, V., Huc, I., Khoury, R.G., Krische, M.J., Lehn, J.-M.: Interconversion of single and double helices formed from synthetic molecular strands. Nature 407, 720–723 (2000)
- 102. Corbin, P.S., Zimmerman, S.C., Thiessen, P.A., Hawryluk, N.A., Murray, T.J.: Complexation-induced unfolding of heterocyclic ureas. Simple foldamers equilibrate with multiply hydrogen-bonded sheetlike structures. J. Am. Chem. Soc. 123, 10475–10488 (2001)
- Moriuchi, T., Tamura, T., Hirao, T.: Self-assembly of dipeptidyl ureas: a new class of hydrogen-bonded molecular duplexes. J. Am. Chem. Soc. **124**, 9356–9357 (2002)